Relational large scale multi-label classification method for video categorization
نویسندگان
چکیده
منابع مشابه
Video Representation Learning and Latent Concept Mining for Large-scale Multi-label Video Classification
We report on CMU Informedia Lab’s system used in Google’s YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. We attribute the good performance to three components: 1) Refined video representation learning with residual links and hypercolumns 2) Latent con...
متن کاملBelief Theory for Large-Scale Multi-label Image Classification
Classifier combination is known to generally perform better than each individual classifier by taking into account the complementarity between the input pieces of information. Dempster-Shafer theory is a framework of interest to make such a fusion at the decision level, and allows in addition to handle the conflict that can exist between the classifiers as well as the uncertainty that remains o...
متن کاملSubset Labeled LDA for Large-Scale Multi-Label Classification
Labeled Latent Dirichlet Allocation (LLDA) is an extension of the standard unsupervised Latent Dirichlet Allocation (LDA) algorithm, to address multi-label learning tasks. Previous work has shown it to perform in par with other state-ofthe-art multi-label methods. Nonetheless, with increasing label sets sizes LLDA encounters scalability issues. In this work, we introduce Subset LLDA, a simple v...
متن کاملLarge Scale Max-Margin Multi-Label Classification with Priors
We propose a max-margin formulation for the multi-label classification problem where the goal is to tag a data point with a set of pre-specified labels. Given a set of L labels, a data point can be tagged with any of the 2 possible subsets. The main challenge therefore lies in optimising over this exponentially large label space subject to label correlations. Existing solutions take either of t...
متن کاملLabel Filters for Large Scale Multilabel Classification
When assigning labels to a test instance, most multilabel and multiclass classifiers systematically evaluate every single label to decide whether it is relevant or not. This linear scan over labels becomes prohibitive when the number of labels is very large. To alleviate this problem we propose a two step approach where computationally efficient label filters pre-select a small set of candidate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multimedia Tools and Applications
سال: 2012
ISSN: 1380-7501,1573-7721
DOI: 10.1007/s11042-012-1149-2